

AM/LAM

Aufgabenstellung seitig FOCA

- Delta Flughelfersyllabus, DGUV und Maschinenrichtlinien aufzeigen
- Verwendung von Material aus Kanada/USA etc, die nicht über eine CE-Konformität verfügen, aufzeigen.
- Verwendung von "Big-Bag, Säcken, dessen Normierung und Stand der Technik definieren.
- Forstmaschinen auf Logging-Abladeplätze erläutern, Personen auf Holzpolter, Situation aufzeigen.

Regulationen / Legal Bases Operation

Regulation (EU) No 965/2012 – Easy Access Rules for Air Operation; May 2022 SPO.SPEC.HESLO.100 Standard operating procedures AMC1 SPO.SPEC.HESLO.100 Standard operating procedures 2006/42/EG (Maschinenrichtlinie)

(c) (3) All additional equipment used, e.g. ropes, cables, mechanical hooks, swivel hooks, nets, buckets, chainsaws, baskets, containers, should be manufactured according to applicable rules or recognised standards. The operator should be responsible for maintaining the serviceability of this equipment.

Technische Übersetzung:

(c) (3) Alle zusätzlich verwendeten Ausrüstungsgegenstände, z. B. Seile, Kabel, mechanische Haken, Wirbelhaken, Netze, Eimer, Kettensägen, Körbe, Behälter, sollten nach den geltenden Vorschriften oder anerkannten Normen hergestellt sein. Der Betreiber sollte für die Aufrechterhaltung der Gebrauchstauglichkeit dieser Ausrüstung verantwortlich sein.

Regulationen / Legal Bases Hersteller

Geltende Vorschriften EU:

2006/42/EG Maschinenrichtlinie

CS-27/29 EASA

Schweiz:

SR 930.11 Produktsicherheitsgesetz

SR 930.111 Produktsicherheitsverordnung

SR 819.14 Maschinenverordnung

Empfehlungen (keine annerkannten Normen) "Regeln der Technik,,:

Flughelfer Syllabus / Syllabus Anhänge zu SOP

- SUVA CH - DGUV D - INRS F - ISPESL IT

Technische Regeln sind in diesem Zusammenhang die sogenannten EN-Normen. Ob sie harmonisiert sind oder nicht ist dem Anhang zur Maschinenrichtlinie zu entnehmen. "harmonisierte Normen,, eine <u>nicht verbindliche</u> technische ….

SR, MRL und harmonisierte Normen gelten für alle gleich (Mindestanforderungen). Die branchenspezifischen Auslegungen können (sinnvollerweise) unterschiedlich sein.

Definitionen:

Lastenaufnahmemittel (LAM)

LAM "Lastenaufnahmemittel ist ein klar definierter Begriff. Diese Bezeichnung sollte Hauptsächlich verwendet werden. (Definition LAM gemäss 2006/42/EG (Maschinenrichtline):

"Lastenaufnahmemittel,, ein nicht zum Hebezeug gehörendes Bauteil oder Ausrüstungsteil, das das Ergreifen der Last ermöglicht und das zwischen Maschine und Last oder an der Last selbst angebracht wird oder das dazu bestimmt ist, ein integraler Bestandteil der Last zu werden, und das gesondert in Verkehr gebracht wird; als Laustaufnahmemittel gelten auch Anschlagmittel und ihre Bestandteile.

Anschlagmittel (AM)

Die Definition Anschlagmittel ist in den Maschinenrichtlinien 2.d definiert.

Sie werden anhand ihrer Funktionalität definiert. Es sind Mittel die an der Last oder um die Last angeschlagen werden.

Lastenmittel (LM) und Tragmittel (TM)

Die Definition Lastenmittel ist nicht klar definiert. Aus diesem Grund herrschen auch Unklarheiten betreffend den Faktoren. Wir sollten dies weg lassen.

Früher gab es in der Maschinenrichtlinie die Definition Tragmittel. Diese wurde inzwischen gelöscht.

Problemstellung:

Die geltenden Vorschriften sind für Hersteller die gleichen, werden jedoch von den Anwender verschieden angewandt.

Die geltenden Vorschriften sind innerhalb der EASA Memberstate gleich, werden jedoch anders angewandt und durch verschiedene Behörden anders kontrolliert.

Die anerkannten Normen sind gleich, werden jedoch je nach Anwender/Branche verschieden angewandt.

Die anerkannten Normen werden innerhalb der EASA Memberstate verschieden angeschaut (siehe DE,CH,F,IT)

An den Vorschriften und Normen haben verschiedene Interessengruppen mit- oder eben nicht-mitgearbeitet (Helikopter Branche, Bau Branche, Fortswirtschaftsbranche, Hersteller von LAM, Hersteller von AM etc.)

Die geltenden Normen wirken sich nicht gleich linear auf die WLL-Helikopter der Transportgeräte aus.

Die bis anhin erstellten Versuche decken nur einen Teil der in den EASA Memberstate registrieren HESLO Luftfahrzeuge ab. Dies resultiert zu Abweichungen im Anwendungs-Bereich.

Haltung SHA Verband

Grundsätzlich gilt die Maschinenrichtlinie als rechtliche Basis.

Der Stand der Technik definieren die Branche/Hersteller/Helikopter-Unternehmung.

Empfehlungen rufen die in den Ländern etablierten Organisation aus: SUVA, DGUV, INRS, ISPESL.

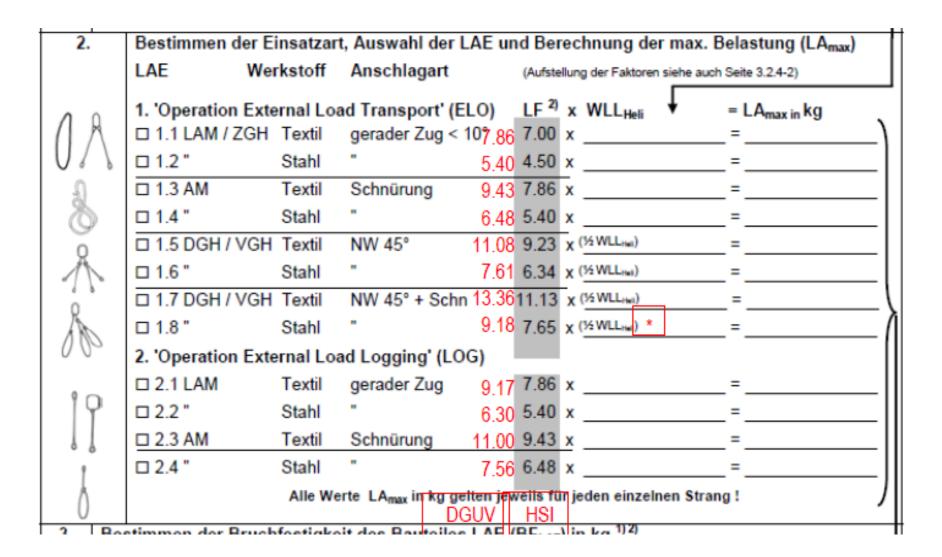
Ist Situation mit DGUV:

Dem SHA liegt ein schreiben vor, welches die Messdaten von dessen Messungen und Herleitungen der Faktoren nicht öffentlich zugänglich machen.

Gespräche zwischen Herr Elfert und B.Seeholzer zum Datenermittlungsprozess für die DGUV haben stattgefunden.

Der SHA möchte keine Empfehlungen die nicht "matchen,

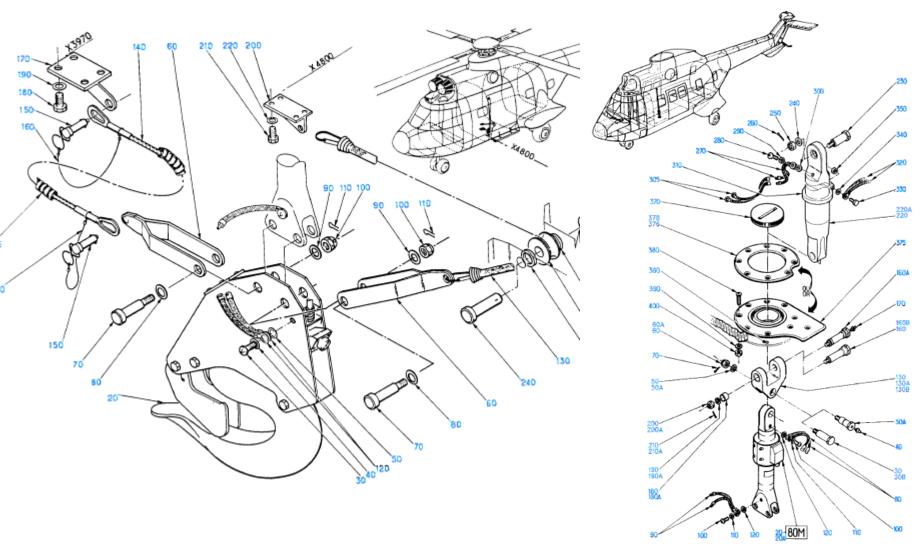
Gründe der Herleitung zur Erhöhung der Faktoren:


- Vorkommnise bzw. Unfälle sind immer wieder die Treiber
- Sicherheitsbedenken
- Unfälle von hochschlagenden Seilen
- Prozesse ohne die Möglichkeit auf verfügbare Grundlagen/Vergleiche zurückzugreifen.

Nicht schriftlich notierte Begründungen zur Herleitung (Nicht nachvollziehbar, ob miteinbezogen oder nicht zur Reduktion):

- Grundgedanke Aviatik (Sicherheit versus Gewicht)
- Grundgedanke Flughelfer (Gewicht des Anhängematerial welches im Wald/Feld/Mast aus Mannskraft angebracht werden muss und allfällige Langzeitschäden/Beschwerden daraus folgen.
- Rest mass zum bereits existierenden Sicherheitsfaktor aus der Maschinenrichtlinie
- Handhabung und Wartung des Materials
- Schäden an Luftfahrzeugen (Struktur, Primär CargoHook), wenn die Kräfte übertragen werden. (Limitationen AFM)
- Helikopter als "dämpfender Faktor,,
- Training der Mitarbeiter, welches dieses Material verwendet.

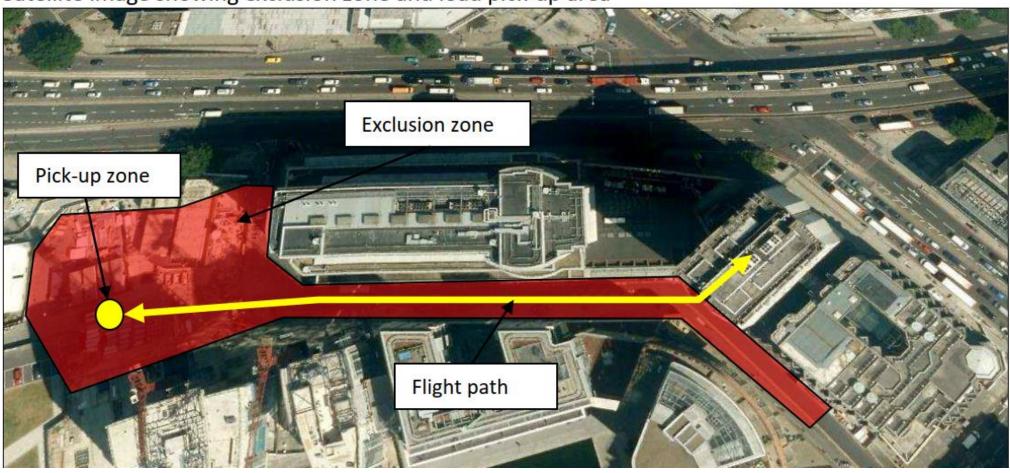
Bauteil oder Last


Kunde

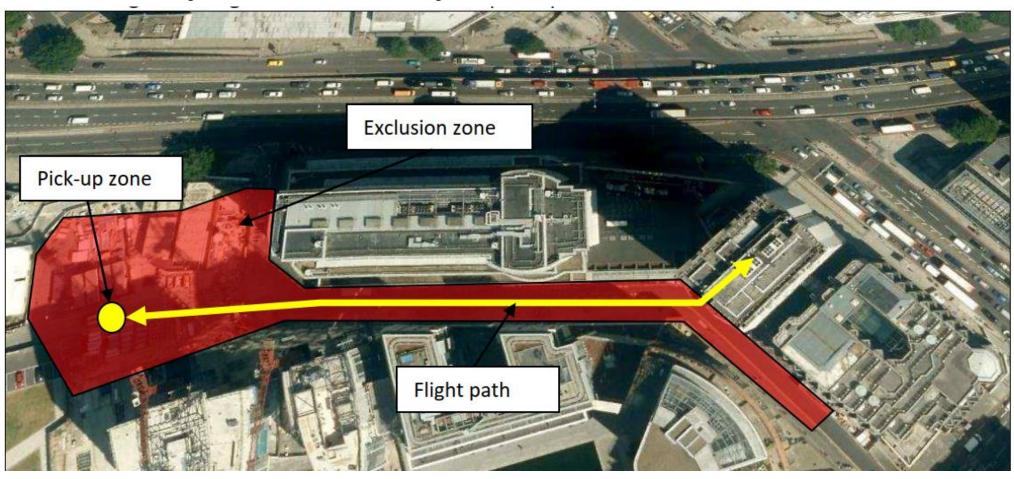
LAM Arbeitsgruppe 2022 – SHA Verband

CS.27/29 Luftfahrzeug: Hersteller SPO HESLO HRA Operator CAMO/145 FCL/SPO Pilot Versicherung 3 party liability evt. Produkhaftpflich Cargo Hook Primär: Hersteller CS.27/29 CAMO/145 Operator Leine: Operator HESLO.SPO.100 Hersteller Maschinerichtlinie CE-Konformität Cargo Hook Sekundär Operator HESLO.SPO.100 Hersteller Machinenrichtlinie evt. Part -21 CE-Konformität evt. Form-1 Lastanschlagmittel HESLO.SPO.100 Operator oder (Schlinge-Schäckel) Kunde Maschinenrichtlinie Hersteller CE-Konformität (Teils Ausnahmen) Anschlaghilfe Kunde Maschinenrichtlinie (Ringschraube Produktionseitig)

Maschinenrichtlinie



Hilton London Metropole Hotel – lifting of chillers by helicopter

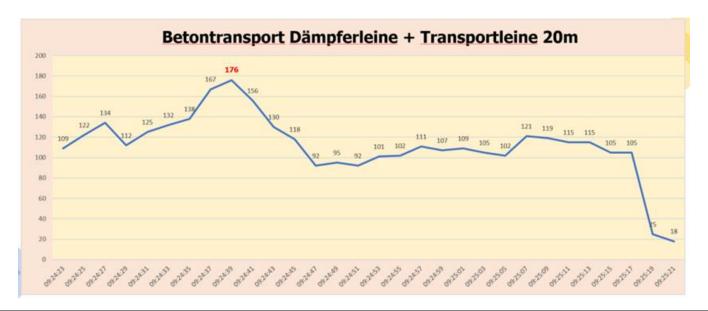

Satellite image showing exclusion zone and load pick-up area

Worst Case Szenario: Überbelastung des LAM/AM, Kraft wird auf Luftfahrzeug Part-21 Konstruktion übertragen.

Schaden am Luftfahrzeug mit Absturz auf die naheliegende Autobahn

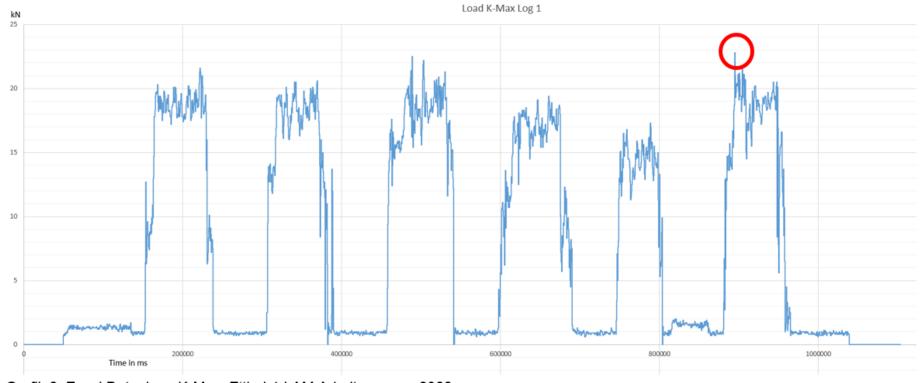
Datensammlung:

AS350/K-MAX/KA32/AS332


Jedes Unternehmen sollte im Besitz dieser Berechnungen sein und Auskunft geben können.

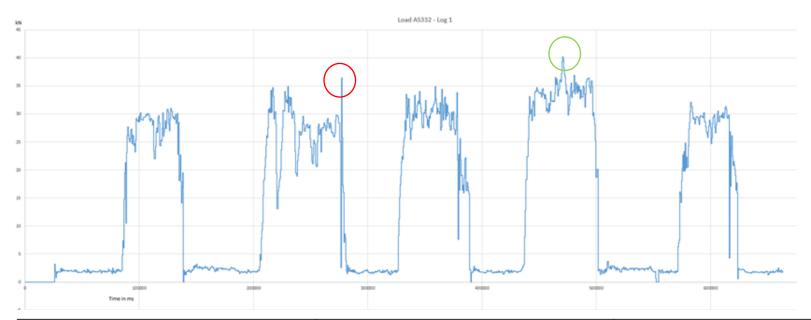
NPGO, Materialwart und Chefflughelfer müssen dies kennen.

Item	Sub Item Description	Typus LM/LAM	A/C	WLL Heli	Difinition WLL Hell Operator	WLL Hersteller	SIFA Hersteller	SIFA Maschinenbaustandard	SIFA DGUV	SIFA STC - Part 21	LA Max Hersteller	LA Max Maschinenbaustandard	LA MAX DGU V	LA Max FH Syilb.	LA Max STC-Part 21	Sirharhait comara a Onarator	Sich erheitsmarge Hersteller	in % über/unter Maschbast.	in kg Maschst. (Sicherheit)	in kg Maschst. (effektiv)	in % über/unter DGU V	in kg DGUV (Sicherheit)	in kg DGUV (effektiv)	in % über/unter FH.Syllabus	in kg FH.Syllabus (Sicherheit)	in kg FH.Syllabus (effektiv)	Testbench End of Life	Foto	Eintrittwahrscheinlich	Ausmass Risibeurteilung	Riskomininierung durch
1	∩ Δ/C 3175kσ		AS350	1400	2000				_								4			I							_	1			<u> </u>
4	0 AS332			4500	4500					_)
4	1 Dämpfer		AS332	4500	4500	5000	8.56			.5	42800	20000	27000	22500			8.56												1	3	3
4	2 Leinen 30/50/80m	LAM		4500		5000	8.56		7.86	/	42800	35000	39300	35000			8.56												1	3 :	3
4	3 Leinen Logging	LAM		4500	4500	5000	9.2	7	9.17 7.	36	46000		45850	39300			9.2			1571				8.52					1	2 :	2
4	4 Übergangstücke	LAM		4500	4500	5000	4	4	5.4 4	.5	20000	20000	27000	22500			4	0.00		0	-12.96								1	3	3
4	5 Drehhaken	LAM		4500		5300	4	4	5.4 4	.5	21200	21200	28620	23850			4	0.00	_	0	-13.74								1	3	3
4	6 Lasthaken LH60	LAM		4500		6000	4	4	5.4 4	.5	24000	24000	32400	27000			4	0.00		0	-15.56								1	4 4	4
4	7 Lasthaken Nobbins	LAM		4500		9071	5	4	5.4	.5	45355		48983	40820			5	22.68		2268					4536	1008			1	2	2
4	8 Verlängerungen	LAM	AS332	4500	4500	5000	7	7	7.86	7	35000	35000	39300	35000			7	0.00	0	0	-5.47	-4300	-547	0.00	0	0			1	3	3
4	10 Rundschlingen 4t	AM	AS332	4500	4000	4000	7	7	7.86	7	28000	28000	31440	28000			7	0.00	0	0	-4.38	-3440	-438	0.00	0	0			2	2 4	alt. Anhängen, Mehrpunkt / Training Flgh.
4	11 Rundschlingen 5t	AM	AS332	4500	4500	5000	7	7	7.86	7	35000	35000	39300	35000			7	0.00	0	0	-5.47	-4300	-547	0.00	0	0			1	2	2
4	12 Verlängerungen	AM	AS332	4500		5000	7	7	7.86	7	35000	35000	39300	35000			7	0.00	0	0	-5.47	-4300	-547	0.00	0	0			1	2	2
4	13 VHG	AM	AS332	4500	4500	5000	7	7	7.86	7	35000	35000	39300	35000			7	0.00	0	0	-5.47	-4300	-547	0.00	0	0			1	2	2
4	14 ZHG	AM		4500	4500	5000	7		7.76	7	35000	35000	38800	35000			7	0.00	0	0	-4.90	-3800	-490	0.00	0	0			1	2	2
4		AM		4500	4000	4000	4	4	5.4 4	.5	16000	16000	21600	18000			4	0.00	0	0	-10.37	-5600	-1037	-4.44	-2000	-444			2	4 8	alt. Anhängen, Mehrpunkt / Training Flgh.
		AM		4500	4000	4000	4		5.48 6	.4	16000		25920	25600			4	0.00	0	0	-15.31	-9920							3		2 alt. Anhängen, Mehrpunkt / Training Flgh. x
	17 1 Strang Ketten 5.3t	AM		4500	4000	4000	4	4	5.4 4	.5	16000	16000	21600	18000			4	0.00	0	0	-10.37	-5600	-1037	-4.44	-2000	-444			2		Balt. Anhängen, Mehrpunkt / Training Flgh.
	18 1 Strang Ketten 5.3t geschnürt	AM		4500		5300	4		5.48 6	.4	21200		34344	33920			4	0.00	0	0	-20.28			-19.88					3		2 alt. Anhängen, Mehrpunkt / Training Flgh. x
	19 1 Strang Ketten 6.7t	AM		4500		6700	4			.5	26800		36180	30150			4	0.00	0 0	0	-17.37	-9380						1	2		B alt. Anhängen, Mehrpunkt / Training Flgh.
1										1																		1			1 · · · · · · · · · · · · · · · · · ·


Messungen AS350

AS350 B3 Wucher Helikopter	Lasttyp: Beton	Ort: 1500-2000 m.ü.M	Lastgewicht:
Date 21.06.2022	Messung 4x pro sec.	Datensatz:	
Equipment:	Betonkübel	Transport Leine 15kN	Dämpferleine 2m 15kN
Lastspitze: 176kN		Messleitung	J.Redofli

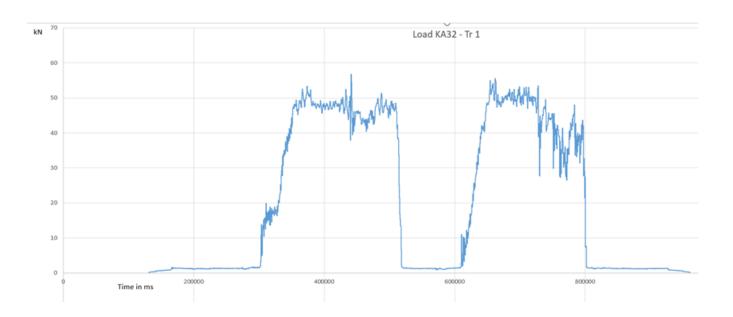
Tabelle 7: AS350, J.Redolfi, 2022



Grafik 2: Excel Datenlog _K-Max_E'thal-1,LAM Arbeitsgruppe, 2022

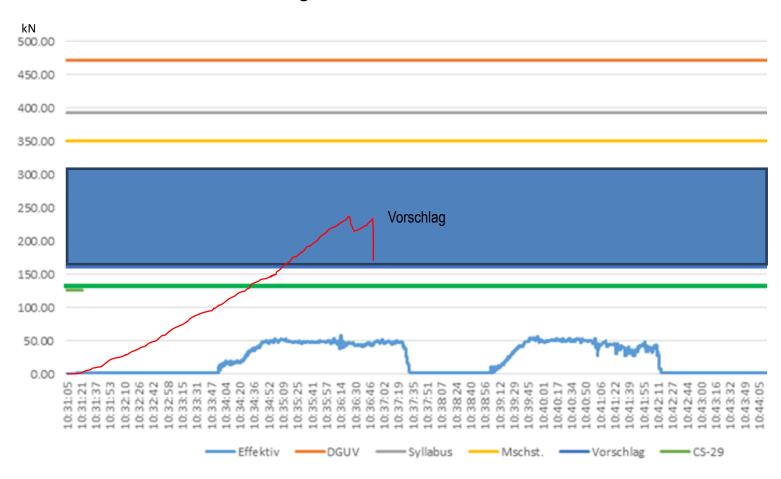
K-Max HB-ZPO WLL 2700kg	Lasttyp: Logging	Ort: Eigenthal 1 OAT: 16°C	Lastgewicht: 1790-2210kg
Date 22.08.2022	Messung 200Hz / 5ms	Datensatz:220655	46° 59' 27 N ; 8° 13' 49
Equipment:	DK-30 (S/N: 009) Heli Hook	TLP Dämpfer (S/N: 211210- 1644-1891-001) Air Work	Nubbins Struppen, 12mm, 6x36WSS, Kuert Seilerei (12.5t)
Lastspitze: 22.8 kN / 524 ms	2324.95kg	Messleitung / Pilot	D.Rüttimann / C.Corthay

Tabelle 8: K-Max, Eigenthal 1, LAM Arbeitsgruppe, 2022



AS332 HB-XVY WLL 4.5t	Lasttyp: Logging	Ort: Brigels OAT: 21°C	Lastgewicht: 2000-3500kg
Date 21.06.2022	Messung 200Hz / 5ms	Datensatz: 132670	
Equipment:	Nubbins Receiver 20 NR Dart Aerospace (9000kg)	Logging Leine TLP 50.50, HSI 001, Dämpfer VM.50 s.5exL HSI 009, Air-Work	Nubbins Struppen, 14mm 6x36 WSS, Kuert Seilerei (13.85t)
Lastspitze 2: 40.2 kN / 520ms	4099.25kg	Messleitung / Pilot	P.Disler / M.Peyer
Lastspitze 1: 36.4 kN / 526ms	3711.76kg		Bilder: Go-Pro Daten HSI AG Abb. 8-12

Tabelle 10: AS332, Brigels, LAM Arbeitsgruppe, 2022

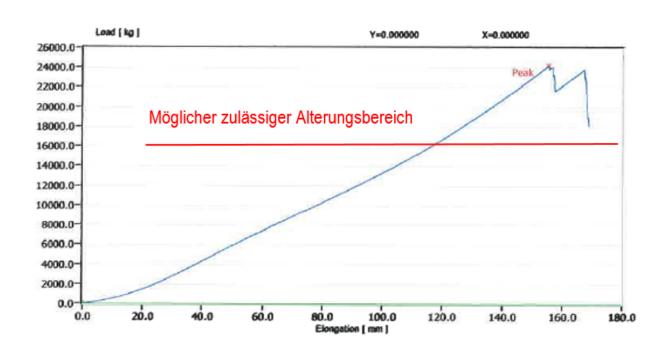


KA32 HB-XKA WLL 5t	Lasttyp: Klimagerät	Ort: Graz	Lastgewicht: 4852kg
Date 27.02.2021 11:00	Messung 200Hz / 5ms	Datensatz: 186785 / 2 Rot	
Equipment	LH50 Prototyp, 001, Heli Hook	Leine 30m TLL_50_302EH HSI 002, 50m TLL_50_50 HSI 011 Zwischen Stück, VB.45.101, 002, Heli Hook	6m Struppen 4t, Kuert Seilerei VGH-ST 50_6 HSI 012, Air- Work Schäckel, hochfest, 6.5t, Robur
Lastspitze: 5675kg / 536ms		Messleitung	D.Rüttimann

Tabelle 11: KA32, Graz, LAM Arbeitsgruppe, 2022

Was sagen uns diese Daten nun aus?

Daten: Testzug 12.02.2016, Rundschlinge 4t, 2.0m, 2006, Lot S16899, Kuert Seilerei, R. Hauswirth

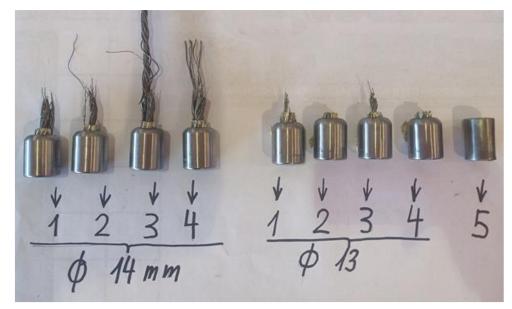

Item	Load(kg)	Elongation(mm)	Stress(kg/mm^2)	Strain(%)
Peak	24250.9	155.90	60.627	7.795
Break	18105.4	169.12	45.263	8.456

28000.0 RS neu 7 26250₋₋ FH-SY 5.56 wenn neu

20000.0 .325 (Fitting x 1.33 = J 5.0

15000.0 .303/305(b)B1) ULmin1 x 1.5

10000.0 .865/.305(a) DLL, 2.5



Grafik 6. Zugtest 12.02.2016, Rundschlinge 4t, 2.0m, 2006, HSI AG; 2006

ı

Testreihen

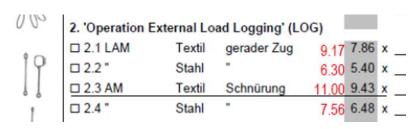

	V1	V2	V3	V4
Seil Durchmesser	12	13	14	15
Seil Typ	Normal/bestehend	komprimiert		
Klinken Typ	Nubbing Receiver NR 12	Nubbins Receiver NR 20	Nubbins Receiver ???	
Zapfentyp	gepresst	konisch		
Kosten (CHF) pro Struppe	65	85	105	

Tabelle 11: Evaluation, Morphologischer Kasten, HSI AG, 2022

Der Hersteller kann die Bruchkraft gepresster Zapfen mit 13.85t und Mindestbruchkraft Seil 144.2kN deklarieren. Dies entspricht einem Faktor von:

WLL 3000kg = 4.61 / 4.8
WLL 3500kg = 3.95 / 4.2
WLL 4000 kg = $3.46 / 3.6$
WLL 4500 kg = $3.07 / 3.2$
WLL 5000 kg = $2.77 / 2.8$

Dies Auslastung war 3.2t = 4.3

Vergleich zum Forst – EKAS

Die EKAS Richtlinie Nr.2134 gibt folgende Faktoren für das gleiche/ähnliche Produkt vor:

Dimensionierung von Zug- und Anschlagmittel

- Zugseile, Ketten, Chokermittel: 2.0
- Textile Anschlagmittel, Rundschlingen, 4.0

Dimensionierung der Seile

- Trag-, Zug-, Hub-, Rückhol- und Hilfsseil: 3,0
- übrige Befestigungs- und Abspannmittel: 4,0
- Chokermittel: 2,0

SOP Logging

Aufnahmebereich: Task Spezialist muss den Gefahrenbereich vor dem anziehen der Last

verlassen.

Flugweg: Flugweg beim Logging müssen für Drittpersonen gesperrt sein

Abladeort: Task Spezialisten befinden sich nicht im Gefahrenbereich während dem

Abladevorgang

Die Lastenspitzenmessungen von 1994/2022 haben teils beim Abladevorgang erhöhte Werte aufgezeigt.

Nachdem die Struppe beim Baumstamm entfernt wird, wird sie gerollt = 1. Mal geprüft. Bevor sie an den nächsten Baumstamm geht, wird sich durch ein TS angebracht = 2. Mal geprüft.

Das Risiko wird operationell und durch Training der TS mitigiert.

Eintrittwahrscheinlichkeits Berrechnung Struppen Risse während dem Flug V/S Triebwerksausfall:

Das Risiko für die Benutzung von Nubbin-Struppen im Bereich der EKAS Forst Richtlinie (Chokerstruppen) stellt kein grösseres Risiko dar als das Verhältnis zu einem Triebwerkausfall.

Company	Daten				Eintrittsv	vahrscheinlichkeit		CAT.POL.305								
	Jahre	Rotationen	Flugstunden	Anzahl Events	Jahre	Rotationen	Flugstunden	A/C	Take off	h	Value A/C		Value Take off		Reference	
HSI AG	45	480554	42000	1	45	0.00000208	0.00002381	0.00001900	0.00000001	1	0.19	0	0.9	0	Letter 18/09/2020	0.89*10 ⁻⁸
Rotex	21	908829	49000	1	21	0.00000110	0.00002041	0.00011268	0.00000001	1	1.1	0	0.8	0	Max Rundle e-mail	1.12*10-4

Anmerkung:

Die Helikopter-Unternehmen und die Hersteller von LAM bemühen sich in Zukunft weitere Inovationen zu entwickeln.

Die Branche kennt ihre Produkte und Hersteller und arbeitet eng mit diesen Zusammen.

Die Produkte zwischen Helikopterbranche und Forstwirtschaft sollten nach ähnlichen Normen gefertigt werden.

Die Ausführung der Zapfen sollten die selben Dimensionen haben, damit man sie auch bei den Forstmaschinen einhängen kann.

Es ist anzumerken, dass die Helikopter-Unternehmung rund 15'000.- CHF in diese Testreihe 2021-2022 investiert hatte. Ebenfall ist anzufügen, dass bei der Evluation des Nubbins-Receiver 20NR 2004 die Messdaten von Emmen 1992 eingeflossen sind, jedoch die interpretation und darauf folgenden kummulierten/pubplizierten Sicherheitsfaktoren keinen Einfluss auf die Wahl der Struppen hatten, da diese aus konstruktiver Ansicht technisch bestimmt wurden.

Big Bag Problemstellung:

Zu viele Schäden mit Big Bag (während Flug verloren oder zerrissen)

Sack CONTAINER AG

CH - 5707 SEENGEN

Tel. +41 62 849 02 02

info@sackcontainer.ch

handling instructions:

- don't use damaged bags
- stock bags away from sun and rain
- follow handling instructions on this label
- follow instructions of Marshaller Syllabuss 3.2.6-7
- user is responsible for correct handling

instructions de manipulation:

- ne pas utiliser des big bags endommagés
- stocker les big bags protegé du soleil et de la pluie
- > suivre les instructions sur cette etiquette
- suivre l'ABC des assistants de vol 3.2.6-7
- l'emploi correcte est dans la responsabilité de l'utilisateur

6:1 MULTI TRIP

1'000 kg SF:

o/art. no.

Sack CONTAINER ®

y/art. no.:

batch no .:

TYPE: He

x-xxxxx project no.: xx.xx.xxxx test lab:

no.: xx-

XX-XXX

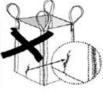
DIN ISO EN 21898

Handhabungsanweisungen:

- Beschädigte Big Bag NICHT verwenden
- Big Bag vor Sonne und Regen geschützt lagern
- Handhabungsanweisungen auf dieser Etikette befolgen
- Flughelfer Syllabuss 3.2.6-7 befolgen
- Der Verwender ist für den korrekten Einsatz verantwortlich

instruzioni per l' utilizzazione:

- > non usare i big bag lesionati
- > conservare i big bag protteto dal solee delle pioggia
- seguire gli instruzioni su questo etichetta
- seguire il manuale dell' assistante al volo 3.2.6-7
- l'uso corretto in responsabilità del utilizzatore



Gesetzliche Grundlagen:

Die ISO Norm 21898 unterscheidet im Grundsatz den Big Bag zum «Einmal- Gebrauch» auch single trip genannt, mit einem Sicherheitsfaktor (Safety Factor) SF 5:1 und den Big Bag für den Mehrfachgebrauch (multi trip) mit dem Sicherheitsfaktor SF 6:1.

Sowohl im Syllabus (3.2.6-7) als auch in der DGUV sind Empfehlungen und Formulierungen enthalten, welche aus Sicht der Big-Bag Hersteller in Bezug auf Big Bag fachlich nicht korrekt sind. Des Weiteren setzen beide Dokumente voraus, dass Big Bag's mehrfach eingesetzt werden. Ein «Einmal-Gebrauch» ist nicht definiert. Dieser muss nicht definiert sein, da der Haftungsgrund dies schon vorgibt. Ist die Verwendung für "einmalig,, deklariert. Entfällt die Verwendung ab dessen 1. Nutzung.

Der Heli Big Bag ist ein nicht harmonisiertes Produkt

Viele verschieden Big Bag sind auf allen möglichen Baustellen, Hüttenversorungen etc. anzutreffen. Eine Einheit zu schaffen scheint als nicht möglich. Demzufolge ist jedes Helikopter-Unternehmen selber für die Umsetzung verantworltich, den sie fliegen die Last schlussendlich.

Bei Kundenbetreuung von mehreren Helikopter-Unternehmungen sollen diesen innerhalb der gleichen Area eventuell synchronisiert werden.

Diskusion und Vorschläge seitig Hersteller / Operator

Die Empfehlung, die Hebebänder gemäss EN 1492-1 auszuführen wurde folgendermassen kommentiert. (rundgenähte, verstärkte Enden)

Hersteller:

- Dies führt zu einer unnötigen zusätzlichen Schwächung des Schlaufenmaterials und ist nach Möglichkeit zu unterlassen.
- Die Hebebänder sollen unter dem Boden nicht genäht sein. Die lose Durchführung reicht zum Auffangen der Kräfte aus, Durch vernähen von Gurten und Boden werden einerseits beide unnötig geschwächt und andererseits beim Anheben als Folge der unterschiedlichen Dehnungseigenschaften unnötig gestresst.

Helikopter-Unternehmungen:

- Jedoch sind vernähte Enden wesentlich widerstandfähiger, je nach Einsatztzgebiet
- Vernähte Enden passen besser in die Last-Haken
- Der Biegeradius wird vergrössert, was zu weniger Stress führt
- Das Vernähen am Boden wird empfohlen, da operationell das Anhängen an Wurzeln und Gitterkörber veringert werden kann, sofern die Bänder nicht in einem Zwischenboden befinden.

Big Bag Lösungsansatz:

Die Art und Anwendung des Big Bag Fluges soll operational beurteilt werden.

Wird der Big Bag Flug operationell beurteilt, ist automatische eine Risikobeurteilt angewandt.

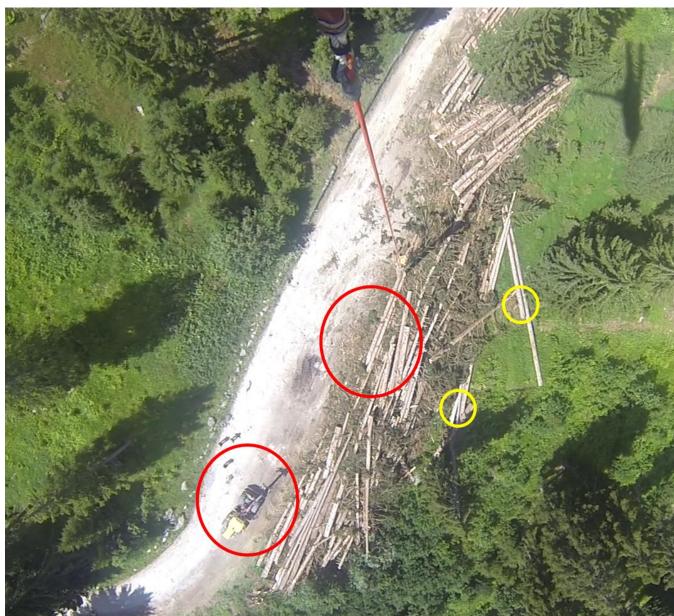
Da der Task Spezialist das letzte Glied in der Kette ist, muss diese Risikobeurteilung im Feld einfach erfolgen (nicht schriftlich). Demzufolge hat eine Risikobeurteilung bereits einmal vorab im Unternehmen während der Erstellung des SOP, der Beschaffung der Big Bag sowie Definition der Big Bag der Kunden erfolgt. Optimal wird auch das Risiko während der Avor-und Offertenphase beurteilt anhand der Vorgaben des Helikopter-Unternehmung.

Ein System analog der Dronen Operation könnte ein Ansatz sein. Die Faktoren geben minus Punkte und die Art des Big-Bag ergeben plus Punkte. Das Punkte Resultat muss dazu über dem Wert "Null", stehen, dieses System würde durch den Operator in den Betriebshandbücher beschriften.

	Single trip (Standard)	Multi trip (Standard)	Typ «Heli- Bag»			
SF	5:1	6:1	6:1			
Zusatzausrüstung	Keine	Keine	Ja			
«Helibag»						
Vierstranggehänge		Ja	nein			
erforderlich						
Flugtauglichkeit	0 bis xx m	Für Einmaleinsatz	Für Mehrfacheinsätze			
	Ohne Drittpersonen					
	Drop Off Zone gewährleistet					
	Etc.					

Die Unfälle der Vergangheit haben gezeigt, dass vermehrt der Task Spezialist vor Gericht als verantworltiche Person stehen musste. Daher muss ihm auch die Kompetenz gegeben werden, dies vor Ort richtig Entscheiden zu können. Demzufolge sind die Vorarbeiten des Unternehmens in der Risikoanalyse und die Ausbildung des Task Spezialist zwingend notwendig.

Der Anwender, in unserem Fall das Helikopter-Unternehmen definiert in seiner LAM Evaluation die Anwendung und Sicherheitsfaktoren seines Materials. Ebenfall definiert er die Zusatzausrüstung mit dem Hersteller.


Hinweise auf Syllabus oder DGUV entfallen. Für die Helikopter-Unternehmungen welche die Big-Bag in ganz Europa anwenden, sollen keine nationalen Referenzen gemacht werden

Forstarbeiten:

- Forderungen Polter nicht besteigen.Einsatz von Forstmaschinen
- Praxis und Theorie
- Unfälle
- Durchschnittliche Rotationszeit

Umgang mit nicht CE-Konformen Flugbetriebsmaterial:

Die Arbeitsgruppe LAM hat bei ihren Verbandsmitgliedern eine Umfrage betreffend diesem Thema gestellt:

Cargo Hooks sind die häufigsten Produkte welche aus Canada/USA ohne CE verwendet werden.

Die meisten Betriebe evaluieren neues Material oder nehmen sich der CE-Zertifizierung an.

Problemstellung: Unterschrift Zugang Designdaten im Falle einer Investigation

Verlängerung bis Ende 2024

Eigenkonstruktionen v/s neue Projekte/Innovationen

Stand Heute: Statement/Feedback FOCA und SUVA, wie weiter:

Was ist Stand der Technik?
Braucht es ein AltMoc bis EASA Gesetzt angepasst?
Braucht es die Anpassung vom EASA Gesetzes Text überhaupt?

Serviceability = Gebrauchstauglichkeit ,,die Eigenschaft eines Bauwerks, die uneingeschränkte Nutzung für den vorgesehenen Zweck zu gewährleisten,,

Lösungsvorschlag 1:

Änderung EASA Gesetzestext wenn Übersetzung von "serviceability,, nicht genügend:

(c) (3) All additional equipment used, e.g. ropes, cables, mechanical hooks, swivel hooks, nets, buckets, chainsaws, baskets, containers, should be manufactured according to applicable rules or recognised standards. The operator should be responsible for the evaluation of the material, definition of safety factors according the operational request and maintaining the serviceability of this equipment.

Lösungsvorschlag 2:

Werden die Normen, Stand der Technik nicht eingehalten, können alternative Methoden angewandt werden. Es gibt Betriebe, die Erfolgreich mit den anderen Sicherheitsfaktoren seit Jahren agieren. Sie verwenden andere Ansätze um die erforderlichen Bruchkräfte am Schluss der "Life Time,, zu gewährleisten.

- Operationelles Flugverhalten
 Wartung der Betriebsmittel
 Schulung des Betriebsmittel-Unterhaltspersonal
 Schulung der Mitarbeiter, die die Betriebsmittel verwenden
 X-Ray und andere Prüfverfahren
 Prüfung der LAM/LM am Ende der Life-Time (Relaiability-Program)
 Evaluation der Betriebsmittel mit Testverfahren
 Risikoanalysen (Eintrittswahrscheinlichkeits- x Ausmass-Berrechnung)
 Erfahrungsfaktor im Umgang mit den LM/LAM

Die Erstellung eines AltMoc kann die Lösung für Unternehmen sein, die in allen EASA-Memberstate tätig sind. Dazu ist folgendes zu beachten:

- Der Operator verfügt über eine Liste aller LAM/LM inkl.Sicherheitsfaktoren/Anwendungsbereich Verfügt der Operator über Messungen und Testergebnisse der LAM/LM, kann mittels Risikoanalyse abgewichen werden. Der Operator kann die Life-Time verkürzen und somit neue Faktoren definieren.
- Auflistung der lokalen Vorschriften.

Projekte für die Zukunft:

Die Branche muss ihre Hausaufgaben machen, damit dies wieder mal möglich sein könnte.

Schlusswort:

Die Luftfahrt wird ein Kompromiss zwischen "Gewicht,, versus "noch fliegbar,, bleiben.

Das unternehmerische Handeln wird ein Kompromiss aus "Sicherheit,, versus "Finanzierbarkeit,, bleiben.

Der ökologische Fussabdruck wird ein Kompromiss aus "Ökologie,, und "Wirtschaftlicheit,, bleiben.

Zusammen stehen alle Beiteiligten in einem stetigen Wandlungs-Prozess. Dieser Wandlungs-Prozess muss Möglich sein.

Die Luftfahrt ist Historisch geprägt von Versuchen. Diese Versuche sollten weitergeführt werden und nicht durch regulatorische Werke eliminiert werden.

Zitat:

"Das Wichtigste ist, dass man nicht aufhört zu fragen."

Albert Einstein

Ich bedanke mich bei den Mitglieder der Arbeitsgruppe und bei allen Helikopter-Unternehumgen die aktiv mitgeholfen haben und sich bereit erklärten Messungen auszuführen und Daten zur Verfügung zu stellen.

Benno Seeholzer

1800 Seiten 17 Operation Manuals und Forms noch 35 Seiten Riskoanalyse, Prozeduren und Auftragsbezogene Dokumente hinzukommen:

Damit man 4 min. Spass an der wirklichen Arbeit haben kann.

London City, Ghurkin (Gurke, 2022): Video

